Hero image

520Uploads

200k+Views

107k+Downloads

Boat design challenge – KS3 engineering
IETEducationIETEducation

Boat design challenge – KS3 engineering

(0)
A fun engineering challenge for KS3 that will give students the opportunity to test boat hull designs in a test tank. Through this process, students will learn about the importance of applying relevant scientific and mathematical understanding when refining and developing an idea. This activity allows students to explore and develop their critical thinking and decision-making skills through a practical approach. The experiment ensures a ‘fair’ set of results is produced. The success of their overall boat hull design is directly dependent upon how well they apply their knowledge and understanding across the disciplines. In addition, key learning points needs to be reinforced through mathematics. The students could carry out initial research into different hull shapes used for various types of boat, and they should produce an image board of hulls with annotations to explain why the shape of the hull is appropriate for the particular type of boat. Types of boat hulls that could be researched include yachts, cruise ships, speed boats, fishing boats, container ships, and catamarans. This activity is designed to be taught through science and design and technology simultaneously, as a cross-curricular project and ideal for use in a STEM Club. However, it can also be tackled independently from each subject. Tools/resources required Test Tank (the construction is a fairly simple activity and can be undertaken by your KS3 students (as an after school activity) or by a technician) Vacuum Former High Impact Polystyrene/MDF or softwood blocks Optionally, modelling clay General Workshop Facilities Stopwatch Masses with a suitable holder The engineering context The focus of this activity is on the principle of hydrodynamics (a similar set of principles to aerodynamics but involving water). Suggested learning outcomes By the end of this activity students will be able to understand the importance of testing models and prototyping within the development of an idea, the need for streamlining in boat design and the principles of hydrodynamic design. Students will also be able to refine ideas in order to improve outcomes, they will be able to relate the shape of the hull to speed and the forces it needs to withstand maximum efficiency and they will be able to apply scientific and mathematical understanding to an engineering context. All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Water supply
IETEducationIETEducation

Water supply

(0)
Organise water filtration components to create a safe water supply system Activity info, teachers’ notes and curriculum links This activity challenges students to work in small teams to design a water supply system for a small town of 5,000 inhabitants. They have to work within a budget, including giving themselves a profit margin. The activity offers strong opportunities for cross-curricular work with Enterprise. The ‘Catalogue of Components’ handout includes a list of possible parts from which students can include in their design of their filtration system. Water is crucial to human life, but it can also be a killer. Drinking or cooking water contaminated with micro-organisms or chemicals is a leading cause of disease and death across the world. Poor facilities for the disposal of sewage and other waste water can quickly lead to the spread of dangerous diseases. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Create Chinese calligraphy
IETEducationIETEducation

Create Chinese calligraphy

(0)
Learning how to write using traditional Chinese handwriting. In this activity learners will use the theme of the Chinese and Lunar New Year to learn about and make use of Chinese calligraphy. They will learn about different types of ‘script’, what is meant by a Xuan, and how to write numbers using Chinese Regular script. There are five major script types used today in China: seal script, clerical script, cursive script, running script and standard script. Regular script means the proper script type of Chinese writing and is used by all Chinese for government documents and printed books. Download the activity sheets for free! All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. Tools/resources required Pencils Paintbrush Paint Pot of water to clean brush The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales. And please do share your learning highlights and final creations with us on social media @IETeducation
What am I? Inputs and outputs
IETEducationIETEducation

What am I? Inputs and outputs

(0)
Guess the device from a series of clues This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. People are always looking for ways to save energy. It is estimated that the average UK homeowner could save up to £240 a year alone on the cost of lighting their home. In this unit of learning, learners will use the BBC micro:bit to develop a prototype for an LED based automatic home lighting system, designed to save energy. Activity info, teachers’ notes and curriculum links This is an engaging starter activity where learners will extend their understanding of input and output devices used in the system and consolidate their learning. They will be able to develop their knowledge of components and both test themselves and their peers. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Maths behind a heating system
IETEducationIETEducation

Maths behind a heating system

(0)
This is a practical exercise in which students will utilise their mathematical knowledge to solve problems and apply formulas. Specifically, they will compute the length of pipes necessary for an underfloor heating system. They will also write a brief explanation of how a sustainable underfloor heating system operates. This can be effectively taught within mathematics or within design and technology, as part of resistant materials or product design. How long will this activity take? This activity will take approximately 60-90 minutes to complete Tools/resources required Green School film Projector/Whiteboard Measuring equipment e.g. tape measures or trundle wheels Squared paper The engineering context Sustainability is a key consideration in modern engineering practices. As the world faces pressing environmental challenges such as climate change and resource depletion, engineers must design solutions that not only meet the needs of society, but also minimise their impact on the planet. Sustainable engineering involves developing systems, products and processes that are socially, economically, and environmentally responsible. This can include reducing carbon emissions, optimising energy use, minimising waste, conserving natural resources, and designing products that can be recycled or repurposed at the end of their lifecycle. Suggested learning outcomes By the end of this activity students will be able to describe the operation of a sustainable underfloor heating system and they will be able to create and apply mathematical formulae in a practical context. Download the free Maths Behind a Heating System activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Materials and their properties poster
IETEducationIETEducation

Materials and their properties poster

(0)
Primary classroom poster taking a closer look at the materials used to make each part of a tent and how these ensure the tent can function effectively. Download single poster here or order the full set of posters for free from the IET Education website.
Nanotechnology poster
IETEducationIETEducation

Nanotechnology poster

(0)
Secondary classroom poster exploring nanotechnology in everyday life. Download the single poster or order a full set of posters for free from the IET Education website.
Make a papier mâché Easter egg
IETEducationIETEducation

Make a papier mâché Easter egg

(0)
Learn how to make papier mâché Easter eggs with balloons in this fun STEM activity for kids In this fun Easter STEM activity for kids, students will learn how to use papier mâché and a balloon to make and decorate an Easter egg that they can use as part of their celebrations. This activity is aimed at primary school students and could be used as a main lesson activity to teach learners about making techniques, design creativity and the use of colour, or part of a wider scheme of learning covering graphics-based techniques. There are also potential curriculum links with the Art department and STEAM based activities. This is one of a set of resources designed to allow learners to use Easter themes to develop their knowledge and skills in Design and Technology and Mathematics. This resource focuses on making and decorating a papier mâché Easter egg with different coloured paints. Follow this step-by-step guide to make your very own papier mâché Easter egg. Download our free activity sheet for more detailed instructions, teachers notes and optional extension work. Also included is a fun bonus maze activity. Tools/resources required A balloon Newspaper and white paper Wallpaper paste (flour and water or PVA glue can be used instead) A small plastic pot Scissors Different coloured paints and other materials for decorating, such as foam letters and card borders Suggested learning outcomes By the end of this Easter STEM challenge learners will be able to use papier mâché and a balloon to make an Easter egg model. They will also be able to use colour to decorate a papier mâché based egg and they will be able to show creativity when designing and making products. The engineering context Engineers make product models to test ideas and see how they will work. Papier mâché can be used to make 3D models. Its other applications include masks for the theatre, structures for carnival floats and even disposable fuel tanks for aircrafts! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation.
Investigating batch production
IETEducationIETEducation

Investigating batch production

(0)
Using the casting process to make a batch of a product In this activity students will use the casting process to create a small batch of identical products. The lesson is part of a series of resources designed to challenge students by requiring them to apply the knowledge and understanding of engineering materials through a ‘batch’ production experience. It followed on from our CAD design project . Also included in the series are Engineering design processes and Investigating cast products. It’s one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in engineering and design and technology (D&T). Activity: Using the casting process to make a batch of a product In this activity, students will use a prepared mould to create a small batch of identical products through a casting process. Students will mix the casting material (like plaster of Paris), pour it into the moulds, and allow the products to dry. Once complete, they will then carefully remove the products from the moulds. Students will need to record the dimensions of each product to identify any variations and explain why these might have occurred… Download our activity overview for a detailed lesson plan on batch production. The engineering context Casting is a commonly used by engineers as a form of batch production, which is way of manufacturing many different forms of goods in an efficient way on a large-scale offering benefit such as mass production and quality control. Suggested learning outcomes This lesson will teach students how to carry out a basic batch manufacture of a cast product. At the end of the activity, students will be able to describe the advantages of batch production. Download our activity sheet and other teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation.
Design a London marathon costume
IETEducationIETEducation

Design a London marathon costume

(0)
Designing a charity costume to wear on the day The London Marathon takes place every year and is a great opportunity for charities to raise money to support their causes. Can you design an eye-catching costume that runners can wear whilst taking part? Activity info, teachers’ notes and curriculum links In this activity, learners will use the theme of the London Marathon to design a costume for participants who are raising money for charity. They will consider how modern and smart fabrics could be used in their design, such as those that wick moisture. They will then use their knowledge to develop a suitable outcome to match the given design brief. This could be used as a one-off main lesson activity to develop designing skills in Design & Technology and understanding of fabric types in textiles. Alternatively, it could be used as a part of a wider scheme of work to develop designing and graphical skills in Design & Technology. All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your learning highlights and final creations with us on social media @IETeducation or send them via email to IETEducation@theiet.org to be featured in our online gallery. Tools/resources required Paper Pens, pencils and coloured pencils/pens The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
Make an Egyptian snake bracelet
IETEducationIETEducation

Make an Egyptian snake bracelet

(0)
**Learn about ancient Egypt and discover how to make a snake bracelet inspired by ancient Egyptian jewellery ** This activity for kids will teach students how to make a snake bracelet inspired by ancient Egyptian jewellery. This activity will encourage students to design and create, as well as teach them historical facts about ancient Egypt. Resources and activity sheets are provided to help teachers support their students. Activity info, teachers’ notes and curriculum links In this activity learners will make an example of a bracelet inspired by ancient Egyptian jewellery using air drying clay. There are related activities that involve making an alternative form of bracelet and necklaces. All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your learning highlights and final creations with us on social media @IETeducation or send them via email to IETEducation@theiet.org to be featured in our online gallery. Downloadable content Make an Egyptian snake bracelet activity Make an Egyptian snake bracelet presentation Tools/resources required Air drying clay Sequins The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
Wheel materials
IETEducationIETEducation

Wheel materials

(0)
Testing materials to see which material is the most suitable for a wheel This resource has been developed with the support of the Bugatti Trust Museum and Study Centre and focuses on testing materials to see which material is the most suitable for a wheel using Engineering and Math’s skills. Ettore Bugatti was the founder and designer of Bugatti sports cars. He was the first designer to use aluminium wheels to decrease the weight of Grand Prix racing cars, designing one of the most successful racing cars in the world. Activity info, teachers’ notes and curriculum links In this activity learners will test various discs made from different materials to see how they perform as a wheel. This activity could be used as a main lesson activity to teach learners about the physical properties of materials or approaches to testing in the context of practical applications. It could also be used as part of an introduction to the practical use of numeracy within engineering. All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your learning highlights and final creations with us on social media @IETeducation or send them via email to IETEducation@theiet.org to be featured in our online gallery. Tools/resources required • Discs of material, 140 mm diameter with a 10 mm central hole; for example, steel, aluminium, acrylic, plywood • Metal bar or pipe, 8-10 mm diameter • G clamps or vices • Masking tape • Weights – various, 250 g to 1 kg • Stopwatch • Calculators • Rulers and writing implements • Optional: scales to weigh the discs The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
Engineers can read your mind
IETEducationIETEducation

Engineers can read your mind

(1)
Explore the different technologies that engineers have developed to scan the brain The use of different types of signals is hugely important in all areas of healthcare. Signal processing engineers are involved in everything from extracting information from the body’s own electrical and chemical signals to using wireless signals to allow search-and-rescue robot swarms to communicate with each other. Together with related activities, this resource allows students to investigate the wide range of sophisticated imaging technology available in modern hospitals, and to explore the latest ideas in search-and-rescue robotics. Activity info, teachers’ notes and curriculum links This activity encourages students to think about new technologies and how difficult it is to predict their future development and application. The handout ‘Reading minds’ is an introduction on how the engineering field of biomedical signal processing is helping doctors understand the brain and treat patients. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. The ‘Mind Scanner’ challenge is an extension activity that allows students to do a bit of future gazing. The challenge looks at how future compact mind scanner technology could be used and by whom - considering both ethical and economic issues. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Energy use of everyday appliances
IETEducationIETEducation

Energy use of everyday appliances

(0)
Understand the relationship between energy transferred, power and time This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. Reducing energy usage in the home saves money, increases energy security and reduces the need to burn unsustainable fossil fuels. The first step in doing this is monitoring how much energy is used each day. In this unit of learning, learners will use the BBC micro:bit to develop a prototype for a home energy usage monitoring system that will inform people how long they leave their lights and/or heating on during the day. Activity info, teachers’ notes and curriculum links In this activity, learners will calculate the amount of electrical energy used by one or more of their appliances in the home. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Design a home security system
IETEducationIETEducation

Design a home security system

(0)
Use the BBC micro:bit programmable system to create a working prototype This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. Home security is increasingly important as homeowners look to ensure that their properties and possessions are protected from potential burglary. Alarm systems are being developed with increasingly complex embedded electronics and programmable components. In this unit of learning, learners will research, program and develop a working door access and alarm system using the BBC micro:bit. Activity info, teachers’ notes and curriculum links In this activity, learners will program a working door access and alarm system using the BBC micro:bit. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Build a robot arm with cardboard
IETEducationIETEducation

Build a robot arm with cardboard

(0)
Design and produce a 2D card model of the physical elements of a robot arm as an example. This curriculum-linked activity teaches the foundation of a wide variety of real-world industrial applications, ranging from loading machines to assembling cars, welding parts together and spray-painting products. Robot arms are also used in applications such as bomb disposal and repairing spacecraft as they orbit the earth. All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your classroom learning highlights with us @IETeducation Tools/resources required For each participating team: 1 A4 cardboard or MDF baseboard 2 A4 pieces of thick card 1 pair of scissors/craft knife 5 brass fasteners/brads/split pins 5 thumb tacks 3 paper clips 2 m length of string or fishing line 2 rubber bands 2 m length of sticky tape or masking tape The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales.
Use the Speed Equation to Calculate Journey Times
IETEducationIETEducation

Use the Speed Equation to Calculate Journey Times

(0)
Calculate journey times from one country to another A costly and sometimes very long aeroplane journey is currently the only option if you intend to travel a long distance. However, what about in the future? One method that has been proposed is the vacuum tube train. The vacuum tube train may be able to reach speeds of 4,000 mph, but is it a realistic option? Activity: Use the Speed Equation to Calculate Journey Times In this fun maths activity for KS3, students will use the speed equation to calculate how long it takes to travel to destinations around the globe from the UK via today’s global transport options. They will then be introduced to a new concept in global travel: the vacuum tube train. Students will work in pairs or small groups to complete the tasks on the handouts below. Handout Journey Times A is for higher-ability students, and Journey Times B is for the less able. Students completing the handout Journey Times A may have to be informed/reminded of the speed = distance/time equation and how to use it to calculate the journey times. This activity can be used to introduce ideas about the environmental, economic, ethical and social impacts of each type of global transport. For example, comparing fuel efficiencies, the impact of infrastructure on the environment and how polluting they are. Suggested learning outcomes By the end of this activity, students will be able to calculate time using the speed equation, and they will be able to identify issues surrounding global transport. The engineering context Engineering has constantly propelled human progress, and the vacuum tube train is a testament to this innovation. This cutting-edge transportation marvel utilises sealed tubes to create a low-pressure environment, drastically reducing air resistance. Maglev technology suspends the train, eradicating friction for unparalleled speed. The engineering behind the vacuum tube train merges aerodynamics, materials science, and electromagnetic systems, enabling mind-boggling velocities. As we strive for more sustainable and efficient transit solutions, this exemplifies the potential of engineering to reshape our world, revolutionising travel and underscoring the limitless possibilities when science and ingenuity converge. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations: England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Robot swarms
IETEducationIETEducation

Robot swarms

(0)
Write a set of rules for governing the behaviour of a robot swarm used in search and rescue operations The use of different types of signals is hugely important in all areas of healthcare. Signal processing engineers are involved in everything from extracting information from the body’s own electrical and chemical signals to using wireless signals to allow search-and-rescue robot swarms to communicate with each other. Together with related activities, this resource allows students to investigate the wide range of sophisticated imaging technology available in modern hospitals, and to explore the latest ideas in search-and-rescue robotics. Activity info, teachers’ notes and curriculum links This activity gets students to work in small teams to create a set of simple rules which can be used to control a robot swarm designed to help in search-and-rescue-type scenarios such as earthquakes. The ‘Robot Swarms’ student brief sets the scene. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs.
Materials and design
IETEducationIETEducation

Materials and design

(0)
Design a sporting outfit that is fit for purpose This unit focuses upon how materials have been specifically engineered in order to provide the requisite qualities and characteristics. It builds on the ‘science behind the material’ scheme of work, developing the students’ understanding of particle states and motion in relation to materials used in engineering/product design. It allows the students to explore a range of engineered and smart materials, identifying why they are ‘fit for purpose’ and how they have been engineered to achieve this purpose. Activity info, teachers’ notes and curriculum links An engaging activity where students will design an outfit that could be worn whilst participating in a sport. With a strong emphasis on developing creative thinking when generating ideas, this activity requires students to be creative when applying knowledge and understanding in science to a design and technology context. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
How technology affects us classroom debate
IETEducationIETEducation

How technology affects us classroom debate

(0)
Argue for and against different technological products The ‘Who’s the winner’ scheme of work provides students with an opportunity to collect data which they can use as evidence to debate whether people should be encouraged to engage in computer-based sport activities. This activity provides a context for the scheme, by focusing on the wider issues relating to society and health. It helps set the scene for the ‘question of sport’ unit of activities by providing a ‘big picture’ in relation to the connection between society and health and the development of new technologies. Activity info, teachers’ notes and curriculum links An engaging activity which allows students to explore social, ethical, economic and health issues relating to the Nintendo Wii and present their findings in a persuasive, coherent and focussed argument. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation